Hello,
I have problem with definition of kinematic constraint for steel plate with longitudinal stiffener. I am keen to maintain the principle of flat cross-sections. For the unstiffened panel, the desired outcome was obtained, and the results were successfully validated. But for web with one longitudinal stieffener model the same coupling conditions was used, but the results obtained are
incorrect. Some type of internal constraints appear, restricting the model and leading to partial plastic load-bearing capacity. The obtained load magnification factor in the ultimate state significantly exceeds the elastic load-bearing capacity.
Below is Teddy Code for stiffened web. If somebody could help I would be very gratefull. Thanks in advance.
!+!Chapter DANE
!=======================================================================================
#define a= 3.000 ![m] dlugosc panelu
#define b= 1.600 ![m] wys. srodnika
#define t= 0.014 ![m] gr. srodnika
!=======================================================================================
#define b1= 1.100 ![m] odleglosc osi zebra od GK
#define bs= 0.160 ![m] wymiary zebra zgodnie z plikem xlsx
#define bt= 0.140 ![m]
#define bb= 0.240 ![m]
#define ts= 0.008 ![m]
!=======================================================================================
#define sig_GK= 256 ! [N/mm2] naprezenia normalne
#define sig_DK= -285 !
#define tau= 0 ! [N/mm2] naprezenia tnace
!=======================================================================================
#define fyk= 355 ! [N/mm2]
!=======================================================================================
+PROG AQUA urs:1
HEAD
NORM DC EN NDC 199X-200X
ECHO FULL EXTR
!—
STEE 1 TYPE S CLAS $(fyk) fy $(fyk) ft $(fyk) scm 1.00
!—
END
+PROG SOFIMSHC urs:2
HEAD
ECHO FULL EXTR
UNIT 5
SYST 3D GDIV 10000
CTRL MESH 1
CTRL HMIN 0.050
!—
SPT NO 1 X 0 Z 0
SPT NO 2 X $(a)[m] Z 0
SPT NO 3 X 0 Z $(b1)-$(bb)/2[m]
SPT NO 4 X $(a)[m] Z $(b1)-$(bb)/2[m]
SPT NO 5 X 0 Z $(b1)-$(bt)/2[m] Y $(bs)[m] !
SPT NO 6 X $(a)[m] Z $(b1)-$(bt)/2[m] Y $(bs)[m] !
SPT NO 7 X 0 Z $(b1)+$(bt)/2[m] Y $(bs)[m] !
SPT NO 8 X $(a)[m] Z $(b1)+$(bt)/2[m] Y $(bs)[m] !
SPT NO 9 X 0 Z $(b1)+$(bb)/2[m]
SPT NO 10 X $(a)[m] Z $(b1)+$(bb)/2[m]
SPT NO 11 X 0 Z $(b) FIX PXPYPZ
SPT NO 12 X $(a)[m] Z $(b) FIX PZ
!—
SLN NO 1 NPA 1 NPE 2 ; SLNS FIX PY DRY -1
SLN NO 2 NPA 3 NPE 4
SLN NO 3 NPA 5 NPE 6
SLN NO 4 NPA 7 NPE 8
SLN NO 5 NPA 9 NPE 10
SLN NO 6 NPA 11 NPE 12 ; SLNS FIX PY DRY -1
!—
LET#FIX ‘PX’
!—
SLN NO 11 NPA 1 NPE 3 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 11
SLN NO 12 NPA 3 NPE 5 ;
SLN NO 13 NPA 5 NPE 7 ;
SLN NO 14 NPA 7 NPE 9 ;
SLN NO 15 NPA 9 NPE 11 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 11
SLN NO 16 NPA 3 NPE 9 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 11
!—
SLN NO 21 NPA 2 NPE 4 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 12
SLN NO 22 NPA 4 NPE 6 ;
SLN NO 23 NPA 6 NPE 8 ;
SLN NO 24 NPA 8 NPE 10 ;
SLN NO 25 NPA 10 NPE 12 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 12
SLN NO 26 NPA 4 NPE 10 ; SLNS FIX PY DRY -1 ; SLNS FIX #FIX GRP 10 REFT >SPT 12
!—
SAR NO 1 T $(t)*1000[mm] GRP 1 MNO 1 MCTL 1 ; SARB TYPE OUT NL 1,21,2,11
SAR NO 2 T $(ts)*1000[mm] GRP 2 MNO 1 MCTL 1 ; SARB TYPE OUT NL 2,22,3,12
SAR NO 3 T $(ts)*1000[mm] GRP 2 MNO 1 MCTL 1 ; SARB TYPE OUT NL 3,23,4,13
SAR NO 4 T $(ts)*1000[mm] GRP 2 MNO 1 MCTL 1 ; SARB TYPE OUT NL 4,24,5,14
SAR NO 5 T $(t)*1000[mm] GRP 1 MNO 1 MCTL 1 ; SARB TYPE OUT NL 5,25,6,15
SAR NO 6 T $(t)*1000[mm] GRP 3 MNO 1 MCTL 1 ; SARB TYPE OUT NL 2,26,5,16
!—
SAR NO 7 T $(ts)*1000[mm] GRP 4 MNO 1 MCTL 1 ; SARB TYPE OUT NL 16,12,13,14
SAR NO 8 T $(ts)*1000[mm] GRP 4 MNO 1 MCTL 1 ; SARB TYPE OUT NL 26,22,23,24
!—
END
!=======================================================================================
!#!Chapter OBC
+PROG SOFILOAD urs:5
HEAD ‘Stress’
!—
LC 101 TITL “axial stress”
!—
LINE REF SLN PROJ XX TYPE PXX $$
X1 0 Z1 0 P1 -$(sig_GK)$(t)1000 $$
X2 0 Z2 $(b) P2 -$(sig_DK)$(t)1000
!—
LET#sig_sl $(sig_DK)-($(sig_DK)-$(sig_GK))($(b)-$(b1))/$(b)
LINE REF SLN NO 12,13,14 TYPE PXX P1 -#sig_sl$(ts)1000
!—
LINE REF SLN PROJ XX TYPE PXX $$
X1 $(a) Z1 0 P1 $(sig_GK)$(t)1000 $$
X2 $(a) Z2 $(b) P2 $(sig_DK)$(t)1000
!—
LINE REF SLN NO 22,23,24 TYPE PXX P1 #sig_sl$(ts)1000
!—
LC 102 TITL “shear stress”
LINE REF SLN NO 1 TYPE PXX P1 -$(tau)$(t)1000
LINE REF SLN NO 11,16,15 TYPE PZZ P1 -$(tau)$(t)1000
LINE REF SLN NO 6 TYPE PXX P1 $(tau)$(t)1000
LINE REF SLN NO 21,26,25 TYPE PZZ P1 $(tau)$(t)*1000
!—
END
!=======================================================================================
!#!Chapter LA
+PROG ASE urs:3
SYST PROB LINE
LC NO 101
LC NO 102
END
+PROG ASE urs:8
SYST PROB LINE
LC NO 201
LCC NO 101 FACT 1.00
LCC NO 102 FACT 1.00
END
!=======================================================================================
!#!Chapter LBA
+PROG ASE urs:4
HEAD LBA
SYST PLC 201
EIGE 20 ETYP BUCK LMIN AUTO LC 1001
END
!=======================================================================================
!+!Chapter GMNIA (0)
+PROG ASE urs:9
HEAD ‘GMNIA(0)’
!—
SYST PROB TH3 NMAT YES ITER 100
!—
ULTI STEP 20 FAK1 0.00001 DFAK 0.1 PRO 1
!—
LC NO 11001
LCC NO 201 ULTI YES
!—
END