!#!Info Example: Prestressed bridge with design !#!Info Keyword: temperature; settlement; prestress; tendon; Design; traffic !#!Info Program: CSM $ $ $ english file name: csm31_design.dat $ $ $ Example bridge construction i,c,b...Location of the data-files: $ ************************** $ ase = Your Program folder sofistik...\ase \english (aqb.zip) $ b = Your Program folder sofistik...\bemess\english $ c = Your Program folder sofistik...\csm \english (csm.zip) $ - extern_prestress_cables.dat ase\english\bridge\ $ - extern_prestress_cables.dat " $ - bridge_design_manual_aqb.dat " $ - box_girder_torsion_shear_design.dat " $ - stahl_verbund_*.dat " $ $ - csm31_design.dat c\design major bridge example with automatic dimensioning with the CSM $ - csm31_design_cabd.dat c\cabd with axis variables haunched in folder more\csm31_design_cabd.dat $ - csm31_design_ella.dat c\more in folder more\csm31_design_ella.dat $ See csm.zip -> sofistik...\csm.dat\english\csm31_design.dat $ $ - prestressed_slab.dat b FE-Prestressed concrete slab (without columns) incl. fatigue design $ csm32_slab_design.dat c\design as prestressed_slab.dat but with CSM $ - csm10_composite_cabd.dat c\cabd Concreting in Step back reversal method - Creep and shrinkage $ - bemess6_design.dat b Building slab $ - bemess5_Schwingbreiten.dat b SLS design slabs $ - See also csm.dat\english\overview_csm_examples_english.pdf: $ - Numerous bridge examples can also $ - be inserted with SSD task „beam and slabbridge“ $ - $ - There you can easily create a bridge and then $ - look into the produced input file (SSD-Task-beam and slabbridge - right mouse button - edit) !#!Kapitel System +PROG AQUA URS:1 HEAD Prestressed bridge - checks with the CSM-Design Module NORM 'NS' 'en199X-200X-BRIDGE' CAT 'B' $ road bridges CTRL REST 1 UNIT 5 $ units: sections in mm, geometry+loads in m $ CTRL styp BEM !*!Label Material CONC 1 C 40 $ = C40/50 STEE 2 S 500 $ standard reinforcement steel 500 STEE 7 S '235' $ TMAX 0 $ structural steel for tubes, rolled steel ... STEE 11 Y '1860A' $ prestessing steel $ fp0,1k = 1600 N/mm2 $ fpk = 1860 N/mm2 $ 0.8*fpk = 0.80*1860 = 1488 N/mm2 $ 0.9*fp0,1k = 0.90*1600 = 1440 N/mm2 $ sigp,max = min(1488,1440) = 1440 N/mm2 EN-1992-1-1 5.10.2.1(1) maximum stress $ sigp,SLS = 0.65*fpk = 0.65*1860 = 1209 N/mm2 EN-1992-1-1 7.2(5) on traffic opening permanent $ sigp,rare= sigp,max STEE 18 Y '1860' !*!Label Section 1 SECT 1 MNO 1 POLY OPZ MNO 1 VERT no Y Z R EXP 1 0.00[m] 0.00[m] - 0.50 $ air contact 2 -4.00[m] 0.00[m] - 1.00 $ for all following points 3 -4.00[m] 0.25[m] 4 -1.70[m] 0.45[m] 5 -1.30[m] 0.62[m] -1.0[m] 6 -0.90[m] 1.30[m] -1.0[m] 7 0.00[m] 1.30[m] let#zmax 1300 $ mm $ $ Torsionsbox: *---------------------> y $ | $ *----------|----------* #ztop $ | |<--#ytop->| $ | | | $ | | | $ | |<--#ybot->| $ *----------|----------* #zbot $ z let#ytop 750 $ [mm] y-value of Torsionsbox above let#ybot 750 $ [mm] y-value of Torsionsbox below let#ztop 110 $ [mm] z-value of Torsionsbox above let#zbot #zmax-110 $ " of Torsionsbox below RF Y #ytop,-#ytop Z #ztop AS 10[cm2] LAY 0 TORS acti D 12 RF Y #ybot,-#ybot Z #zbot AS 10[cm2] LAY 0 TORS acti D 12 $ bending reinforcement: let#ytop 1900 $ [mm] let#ybot 850 $ [mm] let#ztop 60 $ [mm] let#zbot #zmax-60 RF Y #ytop,#ytop/3,-#ytop/3,-#ytop Z #ztop AS 10[cm2] LAY 2 TORS pass D 20 $ above RF Y #ybot,#ybot/3,-#ybot/3,-#ybot Z #zbot AS 10[cm2] LAY 1 TORS pass D 20 $ below CUT 1 ZB 500 MNO 1 LAY 1 $ By x=3.80 m of the support above the tendon CUT 2 ZB 700 MNO 1 LAY 1 $ By x=3.80 m of the support underneath the tendon CUT 3 YB 1300 MNO 1 LAY 3 TYPE FLAN $ belt CUT 4 YB 1700 MNO 1 LAY 3 TYPE FLAN $ belt SPT NO Y Z MNO 'TOP' 0 0 1 'BOT' 0 #zmax 1 $ input literal BOT in kapitel letters !*!Label Section 9 SREC 9 H 1.5[m] B 4[m] $ piers END +PROG SOFIMSHA urs:3 HEAD Prestressed bridge - checks with the CSM-Design Module UNIT 5 $ units: sections in mm, geometry+loads in m SYST SPAC GDIV 1000 POSZ NODE (101 121 1) X (0 21.4/10) GRP 1 BEAM (101 110 1) (101 1) (102 1) NCS 1 NP -1 GRP 2 BEAM (111 120 1) (111 1) (112 1) NCS 1 NP -1 $ BSEC NO 1101,2111 X 0.30 ncs 1 spec A typm HFAC BSEC NO 1101,2111 X 1.10 ncs 1 spec A typm SHEA BSEC NO 1110,2120 X 1.10 ncs 1 spec E typm SHEA BSEC NO 1110,2120 X 0.30 ncs 1 spec E typm HFAC $ GRP 9 $ Den folgenden Block können Sie ohne Änderung verwenden und nur die $ darunter stehenden Variablen let#node ... setzen ! $ (Voraussetzung: Knotennummern im Überbau < 1000) #define support01 let#dhspring 0 $ m bearing height $ bearing springs let#sy 0.5*#b0 TRAN node #node dy #sy dz #h dno 51000 if #b0 ; tran node #node dy -#sy dz #h dno 53000 ; endif TRAN node #node dy #sy dz #h dno 52000 if #b0 ; tran node #node dy -#sy dz #h dno 54000 ; endif $ node on top of pier: node 49000... tran node #node dz #h dno 49000 node #node+51000 FIX KF #node $ coupling if #b0 ; node #node+53000 FIX KF #node ; endif $ coupling node #node+52000 FIX KF #node+49000 $ coupling if #b0 ; node #node+54000 FIX KF #node+49000 ; endif $ coupling SPRI #node+0 #node+51000 #node+52000 DZ 1 CP 1E7 $ vertical bearing if #b0 ; SPRI #node+1 #node+53000 #node+54000 DZ 1 CP 1E7 ; endif $ transverse bearing springs: SPRI #node+3 #node+51000 #node+52000 dy 1 CP 1E6 $ transverse $ longitudinal bearing springs: let#cp_long 1.0 $ weak - to get bearing displacements if #logitud ; let#cp_long 1E6 ; endif $ longitudinal fixed bearing SPRI #node+7 #node+51000 #node+52000 dx 1 CP #cp_long $ longitudinal if #b0 ; SPRI #node+8 #node+53000 #node+54000 dx 1 CP #cp_long ; endif $ longitudinal $ node bottom of pier: node 50000... tran node #node dz #UKpier dno 50000 BEAM #node 50000+#node 49000+#node NCS 9 KR POSY node #node+50000 FIX F $ fixed support #enddef $ let#node 101 $ basenumber of node in superstructure let#h 1.5 $ m cross section height let#b0 3.5 $ m bearingspread let#UKpier 4 $ m bottom level pier let#logitud 0 $ =1 bearing fixed in longitud. direction #include support01 $ let#node 111 $ basenumber of node in superstructure let#logitud 1 $ =1 bearing fixed in longitud. direction let#UKpier 9 $ m bottom level pier #include support01 $ let#node 121 $ basenumber of node in superstructure let#logitud 0 $ =1 bearing fixed in longitud. direction let#UKpier 4 $ m bottom level pier #include support01 $ Group title for WINGRAF: GRP 1 titl 'Superstructure span 1' GRP 2 titl 'Superstructure span 2' GRP 9 titl 'Pier' END !#!Kapitel Loading, Prestress +PROG SOFILOAD URS:4 HEAD actions and loads $ actions bridge design $ All actions should be defined here. $ This can be done in a separate SOFILOAD run as shown here. ECHO ACT Full $ Please check GAMU factors, especially for L_U and L_T (in germany GAMU 1.35) UNIT 5 $ units: sections in mm, geometry+loads in m ACT G_1 TITL 'dead load' ACT G_2 TITL 'dead load' ACT P TITL 'prestress' ACT C TITL 'C+S' ACT ZC GAMU 1.00 1 SUP PERM PSI0 1.00 PSI1 1.00 PSI2 1.00 TITL ' life load creep part' ACT L_T GAMU - 0 SUP EXCL PSI0 0.75 PSI1 0.75 PSI2 0.20 PS1S - TITL 'TS Tandemsystem' ACT L_U GAMU - 0 SUP COND PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL basic load' ACT L_1 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 1' ACT L_2 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 2' ACT L_3 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 3' $ The GAMU and PSI factores are taken from the .ini file depending on the design code (-> check) $ You can also define them nanually here e.g. with: $ ACT L_T GAMU 1.35::1.50 0 SUP EXCL PSI0 0.75 PSI1 0.75 PSI2 0.20 PS1S - TITL 'TS Tandemsystem' $ ACT L_U GAMU 1.35::1.50 0 SUP COND PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL basic load' $ Superposition with ELLA traffic loading see more\csm31_design_ella.dat $ here SUP COND=special case, since L_U is applied in MAXIMA/AQB without inter superposition! $ L_1 with multiple UDL over loads in transvers direction needs EXCL, because only one to be taken ACT SL GAMU 1.50 0 SUP COND PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'loading during construction' $-------------------------------------------------------------------------- ACT FAT GAMU 1.50 0 SUP EXCL PSI0 1 1 1 TITL 'Fatigue LM3' ACT SF GAMU 1.00 0 SUP EXCL PSI0 1 1 1 TITL 'possible settlement ULS' ACT ZF GAMU 1.00 0 SUP EXCL PSI0 1 1 1 TITL 'probable settlement SLS' $ Acc. DIN FB 101 - C.2.3 for settlements GAMA=1.00. ACT W TITL 'wind transvers' ACT T GAMU 0.81 0 SUP EXCL PSI0 0.80 PSI1 0.60 PSI2 0.50 PS1S - TITL 'temperatur' $ In the ULS design you can usually take the temperature forces only with 60 % $ because the concrete may crack and will have only 60% stiffness for the temperature effect in ULS. $ Hence to simplify, set the ULS-gama-u value by 1.35 to 0.81 (0.81 = 1.35*0.60). $ So: safety factor = 1.35 but only with factor 0.6 due to reduced stiffness (60% stiffness) $--------------------------------------------------------------------------------------------------------- ACT Q GAMU 1.50 GAMF 0.00 SUP COND PSI0 1.00 PSI1 1.00 PSI2 1.00 TITL 'life load in construction stages' ACT B GAMU 1.35 1 PART G SUP PERM PSI0 1 1 1 TITL 'construction stage' $ $ The signs SUP PERM,COND,EXCL are necessary and set itself according to $ the definition of traffic load cases: $ SUP EXCL - only one out of available load cases $ SUP CONC - all of the available load cases, if acting unfavourable $ Meaning of PSI-Value: $ $ Fraction :(1.00*Q-Leit + PSI0*Qki)*GAMU-GAMF $ $ Rare : 1.00*Q-Leit + PSI0*Qki $ frequent: PSI1*Q-Leit + PSI2*Qki $ quasi : PSI2*Q-Leit + PSI2*Qki = PSI2*Q-all $ not : PSI1*Q-Leit + PSI1*Qki $ $ to : (ING-BAY-Buba-S.15) $ See MAXIMA - theoretical basics $ G if as generic term effects G the under effects $ G_1 and G_2 combined! alike L the L_U plus L_T combined! $ not but Z the ZF and ZS, as no underline follows! $------------------------------------------------------------------------------------------------ END END $ Overview used user - load case nos: $ 1- 99 basic load cases see following Sofiload-rund $ UDL base-loads are definied in a way that they can be combined additive $ (LC 21-24) ACT - SUP COND, thus no inter superposition is necessary $ $ The Tandemsystem-Load cases 41-61 exclude each other EXCL $ an also no inter superposition is necessary! +PROG TENDON urs:9 HEAD Parabolic Prestress UNIT 5 $ units: sections in mm, geometry+loads in m $ Definition of prestressing system: $ We recommend to input all data as user defined prestressing system. $ For the static analysis the following values are sufficient: SYSP NOPS MAT ZV AZ LITZ MINR BETA MUE ECC SP DO $ 1 11 2430[kN] 1800[mm2] 12 6.50[m] 0.3 0.20 4[mm] 3[mm] 82[mm] $ csm3_parabel and csm32_slab, 12 wires $ 1 11 3078[kN] 2250[mm2] 15 7.10[m] 0.3 0.20 4[mm] 3[mm] 92[mm] $ 15 wires 1 11 3848[kN] 2850[mm2] 19 6.50[m] 0.3 0.21 4[mm] 3[mm] 97[mm] $ csm31_beam 19 wires $ 1 11 2430[kN] 1800[mm2] 12 6.50[m] 0.0 0.00 0[mm] 0[mm] 10[mm] $ csm3_casting_yard $ $ reference axis and span definition: AXES NOH 1 TYPE AUTO 101 121 TOPP NOH 1 KIND NODE S 101,111,121 SP 1,2,3 $ S=101 .. SP 1 = Node 101 is beginning first span $ or TOPP NOH 1 KIND NODE S 101,102,111,120,121 SP 0,1,2,3,4 with excess from 101-102 $ tendon geometry definition: NOPS = prestressing system for max-min radius parameters + duct-excentricities TGEO NOG 1 NOH 1 NOPS 1 $ Definition points of geometry: (TYP=SPAN/FELD station via highpoints) PTUV S U V DVS RV RL TYPE=SPAN 1 0 0.4 - - - 1.4 - 1.22 0 - - 2 0 0.16 0 9.5 1.3 2.6 - 1.22 0 - - 3 0 0.4 - - - $ Additional values: construction stages: CS ICS1 11 22 $ $ prestress-procedure PSIG 'RILE' ANWS 9 KAPA - K3 1280 $ $ k3 = estimated limit to reduce stress at traffic opening (after first creep+shrinkage) $ max-sigma-traffic opening in most cases (e.g. to EN-1992-1-1 7.2(5)) -> 0.65 fpk (or 0.75 depending on design code) $ final tendon definition: TEND NOT 1 NOG 1 NTEN 4 LC 3 LC0 0 $ echo plot full $ tendon plots: SIZE URS $ PLOT GEOE NO all FACH 5 TYPG DUTE PLOT FACT NO 1 FACH 15 end +PROG SOFILOAD urs:8 HEAD UNIT 5 $ units: sections in mm, geometry+loads in m LC 1 FACD 1.0 TITL 'G_1' TYPE none $ Typ none, $ as G_1, G_2 and P are subsequently generated by csm LC 2 TITL 'G_2' TYPE none $ Typ none, $ as G_1, G_2 and P are subsequently generated by csm BEAM GRP 1,2 TYPE PZZ 15 LC 3 TITL 'prestress' TYPE none $ Typ none, $ as G_1, G_2 and P are subsequently generated by csm $ Traffic via influence line evaluation: see csm.dat\...\more\csm31_design_ella.dat $ would require L_U EXCL! $ here SUP COND=special case, since L_U is applied in MAXIMA/AQB without inter superposition! $ L_1 with multiple UDL over loads in transvers direction needs EXCL, because only one to be taken $ Load model 1 acc. EN 1991 german annex !*!Label UDL $ UDL basic load 3 kN/m2 LC 21 TITL 'UDL-span-1-r' TYPE L_U BEAM GRP 1 TYPE PZZ PA 3.0*4.80 EYA 2.4[m] $ 4.80 m width LC 22 TITL 'UDL-span-1-l' TYPE L_U $ = half bridge BEAM GRP 1 TYPE PZZ PA 3.0*4.80 EYA -2.4[m] $ 4.80 m width LC 23 TITL 'UDL-span-2-r' TYPE L_U BEAM GRP 2 TYPE PZZ PA 3.0*4.80 EYA 2.4[m] $ 4.80 m width LC 24 TITL 'UDL-span-2-l' TYPE L_U BEAM GRP 2 TYPE PZZ PA 3.0*4.80 EYA -2.4[m] $ 4.80 m width $ overload lane 1+2 LC 31 TITL 'UDL-overload-r-1' TYPE L_1 BEAM GRP 1 TYPE PZZ PA (12.0-3.0)*3 EYA 2.10[m] $ 2.10 m maxi. excentricity BEAM GRP 1 TYPE PZZ PA (6.0-3.0)*3 EYA 2.10-3.00[m] $ Lane 2 depending on national annex LC 32 TITL 'UDL-overload-l-1' TYPE L_1 BEAM GRP 1 TYPE PZZ PA (12.0-3.0)*3 EYA -2.10[m] BEAM GRP 1 TYPE PZZ PA (6.0-3.0)*3 EYA -2.10+3.00[m] $ Lane 2 depending on national annex LC 33 TITL 'UDL-overload-r-2' TYPE L_2 BEAM GRP 2 TYPE PZZ PA (12.0-3.0)*3 EYA 2.10[m] BEAM GRP 2 TYPE PZZ PA (6.0-3.0)*3 EYA 2.10-3.00[m] $ Lane 2 depending on national annex LC 34 TITL 'UDL-overload-l-2' TYPE L_2 BEAM GRP 2 TYPE PZZ PA (12.0-3.0)*3 EYA -2.10[m] BEAM GRP 2 TYPE PZZ PA (6.0-3.0)*3 EYA -2.10+3.00[m] $ Lane 2 depending on national annex $ Maxima can take one loadcase of L_1 and one loadcase of L_2 !*!Label TS Tandem System $ Tandemsystem : Lane 1:Wheel load 150 kN/Rad TS=SOFILOAD-TYP L ! $ Total excess load=600 kN (Please check safety factor GAMU ! 1.35/1.50) $ Lane 2:Wheel load 100 kN/Rad $ Total excess load=400 kN $ ======================================================================= $ Case EYA1 Lane 1 is at right all xx m a Node position! $---------------------------------------------------------------------------------------- $ Distribution of of lanes acc. EC $ traffic width 7.20m: $ vehicle full right: EYA1= 7.20m/2 - 1.50m = 2.10 m = center of lane 1 $ EYA2= 2.10 m - 3.00m = -0.90 m = center of lane 2 loop#1 20 LC 101+#1 TITL 'Tandem system lane 1+2' TYPE L_T BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY 2.10+1.0[m] $ EYA1 BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY 2.10-1.0[m] BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY -0.90+1.0[m] $ EYA2 BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY -0.90-1.0[m] endloop $ Achsabstand 1.20 m = +- 0.60 - axis distance 1.20 m = +- 0.60 LC 201 TITL 'Tandem system left lanes' TYPE L_T $ only two to show principle ! let#1 4 BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY -2.10+1.0[m] $ EYA1 left BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY -2.10-1.0[m] BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY +0.90+1.0[m] $ EYA2 left BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY +0.90-1.0[m] LC 202 TITL 'Tandem system left lanes' TYPE L_T $ only two to show principle ! let#1 6 BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY -2.10+1.0[m] $ EYA1 left BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 2.14*#1,2.14*#1+1.20 EY -2.10-1.0[m] BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY +0.90+1.0[m] $ EYA2 left BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 2.14*#1,2.14*#1+1.20 EY +0.90-1.0[m] !*!Label Settlement $ The potential ground movements in the check of ultimate limit state are to be affixed, by their determination $ accor. to (German)DIN FB 102 II-2.3.2.2(103)P, without any further checks a 0.6-times stiffness of $ state I to be deposed (due to potential transfer in to state II).Accor. to the opinion of SOFiSTiK (Dr. Bellmann) $ then in the superposition a load safety factor g=1.35 to be affixed LC 81 TITL 'possible settlement ULS 1+3' TYPE SF $ 'mögl.Setzung 1+3' NODE NO 50101,50121 TYPE WZZ 1000*0.01*0.60[mm] $ entspricht Berechnungen mit 0.6-fachen Steifigkeiten $ equivalent analysis with 0.6-times stiffness LC 82 TITL 'possible settlement ULS 2' TYPE SF $ 'mögl.Setzung 2' NODE NO 50111 TYPE WZZ 1000*0.01*0.60[mm] $ The probable ground movements in checks of serviceability $ limit state must be applied 1.0- times, see DIN FB 102 II-2.3.4(110)P. $ The 0.6- reduction is not feasible here! $ 1 cm as possible settlement ULS and 0.5 cm as probable settlement SLS is applied in this analysis, $ respectively per column axis applied and superposed unfavorable. LC 83 TITL 'probable settlement SLS 1+3' TYPE ZF $ wahrscheinliche Setzung 1+3 NODE NO 50101,50121 TYPE WZZ 1000*0.005[mm] LC 84 TITL 'probable settlement SLS 2' TYPE ZF $ wahrscheinliche Setzung 2 NODE NO 50111 TYPE WZZ 1000*0.005[mm] $---------------------------------------------------------------------------------------------- LC 86 TYPE none TITL 'TN-summer' ; BEAM GRP 1,2 TYPE DT PA 37-10 $ 10 Grad Aufstelltemperatur LC 87 TYPE none TITL 'TN-winter' ; BEAM GRP 1,2 TYPE DT PA -17-10 $ 10 degree erection temperature LC 88 TYPE none TITL 'DT warm on top' ; BEAM GRP 1,2 TYPE DTZ PA -7.9 $ (ING-BAY-Buba-S.10) LC 89 TYPE none TITL 'DT warm bottom' ; BEAM GRP 1,2 TYPE DTZ PA 5.0 $ (ING-BAY-Buba-S.10) $ Temperature combinations - Temperatur Kombinationen: LC 90 TYPE T TITL 'T summer posdt TN+wm*dT' ; COPY 86 ; COPY 88 FACT 0.75 LC 91 TYPE T TITL 'T summer negdt TN+wm*dT' ; COPY 86 ; COPY 89 FACT 0.75 LC 92 TYPE T TITL 'T winter posdt TN+wm*dT' ; COPY 87 ; COPY 88 FACT 0.75 LC 93 TYPE T TITL 'T winter negdt TN+wm*dT' ; COPY 87 ; COPY 89 FACT 0.75 LC 94 TYPE T TITL 'T summer posdt wn*TN+dT' ; COPY 86 FACT 0.35 ; COPY 88 LC 95 TYPE T TITL 'T summer negdt wn*TN+dT' ; COPY 86 FACT 0.35 ; COPY 89 LC 96 TYPE T TITL 'T winter posdt wn*TN+dT' ; COPY 87 FACT 0.35 ; COPY 88 LC 97 TYPE T TITL 'T winter negdt wn*TN+dT' ; COPY 87 FACT 0.35 ; COPY 89 $ ----------------------- Einheitstemperaturlastfälle für Lagerwege ----- $ ----------------------- + 10 Grad gleichmässige Mittentemperatur ----- LC 98 TYPE none TITL 'Temp 10 degree constant' BEAM GRP 1,2 TYPE DT PA 10 $ Überbau $ ----------------------- + 10 Grad dt/h oben warm --------- LC 99 TYPE none TITL 'Temp dt/h 10 degree warm on top' BEAM GRP 1,2 TYPE DTZ PA -10 $---------------------------------------------------------------------------------------------- !*!Label Load in construction stage $ load in construction stage on one span only: LC 71 TITL 'SL_construction' TYPE none $ Typ none, $ as G_1, G_2 and P are subsequently generated by csm BEAM GRP 1 TYPE PZZ PA 1*2.5 EYA 0.0[m] !*!Label Wind LC 72 TITL 'wind_transvers' TYPE W $ will not be used further! BEAM GRP 1,2 TYPE PYY 30.0 $ only to test! END +PROG ASE URS:6 HEAD Analysis of single load cases ECHO FORC,DISP,LOAD no LC 1,2,3 $ G_1, G_2, P LC 9 FACD 1.0 TITL 'G_1+G_2+P' TYPE none LCC 2,3 $ If LC 1 has yet loads apart of FACD, then also LCC 1! $ To compare G1+G2+P in a LC 9 LC 21,22,23,24 $ UDL basic loads span 1 LC 31,32,33,34 $ UDL super loads span 2 LC (101 120 1) $ Tandem loads right LC 201,202 $ Tandem loads left $ only two to show principle ! LC 71,72 $ construction and wind LC 81,82,83,84 $ settlements LC (90 99 1) $ temperature END !#!Kapitel CSM +PROG CSM URS:87 HEAD Construction sequence CTRL DL AUTO $ Dead load of gamma automatically ECHO RCRE full $ CS 10 TYPE G_1 TITL 'G_1' CS 11 TYPE P TITL 'Prestress 60 percent' FACP 0.60 CS 15 TYPE C_1 TITL 'Creep until G_2' T 40 CS 20 TYPE G_2 TITL 'G_2, Asphalt, capping' CS 21 TYPE P TITL 'tensioning to 100 percent' ICS1 11 FACP 1.00 CS 25 TYPE C_1 TITL 'Creep until traffic opening' T 40 CS 35 TYPE C_2 TITL 'C+S t-infinite' T 365*100 NCRE 2 $ GRP NO ICS1 T0 PHIF=1 - 10 14 $ all groups will be activated in construction stage 10, TO= 14 Days $ $ LC: only secondary loads! prestress load cases will be automatically inserted! LC 2 ICS1 20 $ g_2 SELE BEAM 1105 X 0[m] $ Beams for the AQB stress output $ 2111 X 0[m] END +apply "$(NAME)_csm.dat" !#!Kapitel Superposition +PROG CSM URS:88 HEAD Head Superpositioning for the following CSM design : ACT input and DESI MAX $ ACT TYPE FOR $ Definition of additional actions: G,P,C are activated automatically L_U SLS,ULS $ -> MAXIMA: SUP COND UDL base load $ L_U...L_T in most times better with a MAXIMA pre superposition see csm33_earthquake_bridge.dat L_1 SLS,ULS $ UDL oberload span 1 - take only one L_2 SLS,ULS $ UDL oberload span 2 - take only one L_T SLS,ULS $ tandem axle $ Superposition with ELLA traffic loading see more\csm31_design_ella.dat T SLS,ULS $ temperature ZF SLS $ true settlement SLS SF ULS $ possible settlement ULS ULS DESI MAX $ Only perform superpositioning without design CTRL FILE 'maxi' $ filename for the created input file END +apply "$(NAME)_maxi.dat" !#!Kapitel Design final stage +PROG CSM urs:12 HEAD decompression check final stage DESI CHEK $ Important checkprint for one beam to verify the stress in defined stress points DESI DECO $ decompression check $ or: $ DESI DECO $ first decompression check $ DESI ULTI $ ULS design only $ DESI STAN $ all usual checks BOX zmin -1 zmax 0.01 GRP 1,2 $ Graphik Box für WING $ graphic box for WING END +apply "$(NAME)_desi.dat" !#!Kapitel Design \|Bauzustand mit Teilvorspannung construction stage with partial prestress +PROG CSM urs:2 HEAD DECO+ULTI construction stage with partial prestress LCCS 71 ACT Q DECS CS 20 DESI CHEK $ Checkprint to verify the stress in one beam in defined stress points DESI ULTI,DECO CTRL FILE 'decs' $ filename for the created input file END +apply "$(NAME)_decs.dat $ Clean file folder: +sys del $(project).$d?