!#!KAPITEL Material and System generation +PROG AQUA URS:1 HEAD UNIT 5 $ units: sections in mm, geometry+loads in m NORM 'NF' NDC 'en199X-200X' echo mat,sect full CONC 1 C 30 $ here unused, therefore material 9 is used for brics! STEE 3 S 500 MATE 9 E 33000 MUE 0.2 TITL 'LADE C30 SLS fcm 38 fctk 2.03' NMAT 9 'LADE' P1 4353041 P2 1.5 P3 2028 P6 0.2 $ P3=tensile strength $ The yielding curve is plotted in ASE in the material output! $ Parameter for other concrete strength see example Beispiel bric_concrete.dat $ If you change P3 you also must adapt P1 to get the same uniaxial strength! $ So best change P3 and look to the Ursula plot, then change P1 - and so on! SREC 1 H .80[m] B .80[m] SO 70[mm] ASO 3.14*2 ASU 6.15*7 MNO 1 MRF 3 $ 7 Durchmesser 28 = 43.05 cm2 = 53.8 cm2/m SCIT 20 D 20[mm] MNO 3 SCIT 30 D 28[mm] MNO 3 $ Durchmesser 28 SCIT 40 D 14[mm] MNO 3 $ Durchmesser 14 alle 50 cm END +PROG SOFIMSHA urs:3 HEAD Bric UNIT 5 $ units: sections in mm, geometry+loads in m SYST SPAC GDIV 10000 POSZ NODE NO X Y Z 111 0 0 0 112 0 0.14 0 113 0 0.66 0 114 0 0.80 0 tran node 111 119 1 dno 10 dz 0.14 tran node 111 119 1 dno 20 dz 0.66 tran node 111 119 1 dno 30 dz 0.80 $ tran node 101 199 dno 100 dx 0.10 tran node 101 199 dno 200 dx 0.30 $ Auflager tran node 101 199 dno 300 dx 2.30 $ Ende Schubbügel tran node 101 199 dno 400 dx 8.30 $ Ende Feld 1 tran node 101 199 dno 500 dx 10.30 $ Auflager tran node 101 199 dno 600 dx 12.30 $ Ende Schubbügel tran node 101 199 dno 700 dx 18.30 $ Ende Feld 2 tran node 101 199 dno 800 dx 20.30 $ Auflager tran node 101 199 dno 900 dx 20.50 $ kurz vor Endescheibe tran node 101 199 dno 1000 dx 20.60 $ Ende node (341 344 1) fix pz node (641 644 1) fix pz node (941 944 1) fix pz node 344 fix pp node 944 fix pypz sto#grobfein 1 if #grobfein==1 $ Teilung im Querschnitt: let#mr 1 $ Teilung Randschicht 0.14 m let#mi 4 $ Teilung Innenschicht 0.66 m $ Teilung längs: let#nfeld1 4 $ Teilung Schubbereich_Endlager let#nfeld2 6 $ Teilung Feldbereich let#nfeld3 4 $ Teilung Schubbereich_Mittenlager else $ Teilung im Querschnitt: let#mr 2 $ Teilung Randschicht 0.14 m let#mi 8 $ Teilung Innenschicht 0.66 m $ längs: let#nfeld1 4 $ Teilung Schubbereich_Endlager let#nfeld2 12 $ Teilung Feldbereich let#nfeld3 8 $ Teilung Schubbereich_Mittenlager endif #define grptext=Endescheibe let#k100 100 ; let#grp 10 ; let#n 1 $ Teilung x #define bb $ Würfel links,mitte,rechts obere Schicht: let#k1 #k100+11 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mr mno 9 GRP 98 titl 'Quad Glasur oben' ; QUAD fit N1 #k1 #k1+1 #k1+101 #k1+100 T 1[mm] MNO 1 NRA 0 let#k1 #k100+12 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mi N #n K #mr mno 9 GRP 98 titl 'Quad Glasur oben' ; QUAD fit N1 #k1 #k1+1 #k1+101 #k1+100 T 1[mm] MNO 1 NRA 0 let#k1 #k100+13 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mr mno 9 GRP 98 titl 'Quad Glasur oben' ; QUAD fit N1 #k1 #k1+1 #k1+101 #k1+100 T 1[mm] MNO 1 NRA 0 GRP 99 titl 'Quad Glasur Seite' ; QUAD fit N1 #k1+1 #k1+101 #k1+111 #k1+11 T 1[mm] MNO 1 NRA 0 $ Würfel links,mitte,rechts Mittelschicht: let#k100 #k100+10 let#k1 #k100+11 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mi mno 9 let#k1 #k100+12 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mi N #n K #mi mno 9 let#k1 #k100+13 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mi mno 9 GRP 99 titl 'Quad Glasur Seite' ; QUAD fit N1 #k1+1 #k1+101 #k1+111 #k1+11 T 1[mm] MNO 1 NRA 0 $ Würfel links,mitte,rechts unterste Schicht: let#k100 #k100+10 let#k1 #k100+11 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mr mno 9 let#k1 #k100+12 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mi N #n K #mr mno 9 let#k1 #k100+13 ; let#grp #grp+1 ; GRP #grp titl '$(grptext)' Bric N1 #k1 #k1+1 #k1+101 #k1+100 n5 #k1+10 #k1+11 #k1+111 #k1+110 M #mr N #n K #mr mno 9 GRP 99 titl 'Quad Glasur Seite' ; QUAD fit N1 #k1+1 #k1+101 #k1+111 #k1+11 T 1[mm] MNO 1 NRA 0 #enddef #include bb #define grptext=Ende_vor_Auflager let#k100 200 ; let#grp 20 ; let#n 1 $ Teilung x #include bb #define grptext=Schubbereich_Endlager let#k100 300 ; let#grp 30 ; let#n #nfeld1 $ Teilung Schubbereich_Endlager #include bb #define grptext=Feldbereich let#k100 400 ; let#grp 40 ; let#n #nfeld2 $ Teilung Feldbereich #include bb #define grptext=Schubbereich_Mittenlager let#k100 500 ; let#grp 50 ; let#n #nfeld3 $ Teilung Schubbereich_Mittenlager #include bb #define grptext=Schubbereich_Mittenlager let#k100 600 ; let#grp 50 ; let#n #nfeld3 $ Teilung Schubbereich_Mittenlager #include bb #define grptext=Feldbereich let#k100 700 ; let#grp 40 ; let#n #nfeld2 $ Teilung Feldbereich #include bb #define grptext=Schubbereich_Endlager let#k100 800 ; let#grp 30 ; let#n #nfeld1 $ Teilung Schubbereich_Endlager #include bb #define grptext=Ende_vor_Auflager let#k100 900 ; let#grp 20 ; let#n 1 #include bb #define grptext=Endescheibe let#k100 1000 ; let#grp 10 ; let#n 1 #include bb END !#!KAPITEL Linear analysis +PROG SOFILOAD urs:8 HEAD ACT G ACT Q LC 901 type none QUAD grp 98 TYPE PZZ P 50/0.80 END +PROG ASE URS:2 HEAD ctrl solv 4 LC 101 dlz 1.00 titl 'SLS linear' LCC 901 END !#!KAPITEL Smeared reinforcement in cracked concrete TCM Triple_Crack_Model +PROG BEMESS urs:9 HEAD Definition of reinforcement parameters and minimum reinforcement $ Circular reinforcement see example volume_meshing_video.dat $ $ Calcutation of the smeared reinforcement in Brics: $ for example group 48 = midspan bottom bric layer (thickness= height= 0.14m): $ In this area 7 bars with diameter 28 exist = AS = 43.05 cm2 $ in an area of 0.80m*0.14m=0.112m2 -> ASO = AS/0.112m2 = 402.2 cm2/m2 $ $ top normal nur 7 diameter 20 = 21.98 cm2 ASO = AS/0.112m2 = 196.2 cm2/m2 $ topmid support 12 diameter 28 = 73.89 cm2 ASO = AS/0.112m2 = 659.7 cm2/m2 $ $ stirrups diameter 20 alle 15 = as=20.93cm2/m ASO3 = as/0.14m = 148.5 cm2/m2 $ stirrups midspan 20 alle 30 = as=10.46cm2/m ASO3 = as/0.14m = 74.3 cm2/m2 $ x-bars outside 10 alle 30 = as= 2.61cm2/m ASO3 = as/0.14m = 18.7 cm2/m2 $ final disc 20 alle 15 = as=20.93cm2/m ASO3 = as/0.14m = 148.5 cm2/m2 DI3D 0[°] 0[°] $ = BRIC input in rad , for 10 degree please input 10*3.14/180 or 10[°] $ default PARA NOG - DU 20[mm] 20[mm] 20[mm] ASU 10 ASU2 10 ASU3 10 $ Endscheibe PARA NOG 11,12,13 DU 28[mm] 20[mm] 20[mm] ASU 196.2 ASU2 148.5 ASU3 148.5 PARA NOG 14,15,16 DU 20[mm] 20[mm] 20[mm] ASU 148.5 ASU2 148.5 ASU3 148.5 PARA NOG 17,18,19 DU 28[mm] 20[mm] 20[mm] ASU 402.2 ASU2 148.5 ASU3 148.5 $ Ende_vor_Auflager PARA NOG 21,22,23 DU 28[mm] 20[mm] 20[mm] ASU 196.2 ASU2 148.5 ASU3 148.5 PARA NOG 24 DU 20[mm] 20[mm] 20[mm] ASU 74.3 ASU2 10 ASU3 74.3 PARA NOG 25 DU 20[mm] 20[mm] 20[mm] ASU 0 ASU2 0 ASU3 0 PARA NOG 26 DU 20[mm] 20[mm] 20[mm] ASU 74.3 ASU2 10 ASU3 74.3 PARA NOG 27,28,29 DU 28[mm] 20[mm] 20[mm] ASU 402.2 ASU2 148.5 ASU3 148.5 $ Schubbereich_Endlager PARA NOG 31,32,33 DU 28[mm] 20[mm] 20[mm] ASU 196.2 ASU2 148.5 ASU3 148.5 PARA NOG 34 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 35 DU 20[mm] 20[mm] 20[mm] ASU 0 ASU2 0 ASU3 0 PARA NOG 36 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 37,38,39 DU 28[mm] 20[mm] 20[mm] ASU 402.2 ASU2 148.5 ASU3 148.5 $ Feldbereich PARA NOG 41,42,43 DU 28[mm] 20[mm] 20[mm] ASU 74.3 ASU2 74.3 ASU3 74.3 PARA NOG 44 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 45 DU 20[mm] 20[mm] 20[mm] ASU 0 ASU2 0 ASU3 0 PARA NOG 46 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 47,48,49 DU 28[mm] 20[mm] 20[mm] ASU 402.2 ASU2 74.3 ASU3 74.3 $ Schubbereich_Mittenlager PARA NOG 51,52,53 DU 28[mm] 20[mm] 20[mm] ASU 659.7 ASU2 148.5 ASU3 148.5 PARA NOG 54 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 55 DU 20[mm] 20[mm] 20[mm] ASU 0 ASU2 0 ASU3 0 PARA NOG 56 DU 20[mm] 20[mm] 20[mm] ASU 18.7 ASU2 10 ASU3 74.3 PARA NOG 57,58,59 DU 28[mm] 20[mm] 20[mm] ASU 402.2 ASU2 148.5 ASU3 148.5 END +PROG ASE URS:6 HEAD ctrl conc v3 2.7 $ syst prob nonl nmat yes tol -2.0 post 1 LC 501 dlz 1.00 titl 'LADE smeared TCM' $ Triple_Crack_Model LCC 901 END Overview examples: - lade_concrete_calibration.dat Wall with uniaxial pressure to calibrate the LADE material input (uniaxial compression strength) - bric_concrete.dat Single span beam, LADE Triple_Crack_Model, reinforcement with real beam elements - bric_smeared_cracked_girder.dat Two span girder, LADE Triple_Crack_Model, smeared reinforcement with BEMESS input Main Smeared reinforcement result: WINGRAF - design - volume - nonlinear - steel stress - volume_meshing_video.dat Wind turbine foundation, LADE Triple_Crack_Model, smeared reinforcement in circular direction SOFIMSHA input: see also YOUTUBE Video : search for SOFiSTiK Volume Meshing SOFIMSHA - bric_lade_yield_surface_plot.dat Creates a .cdb with the yield surface for animation of the yield surface WINGRAF results on LADE concrete anaylsis: - results - volume elements - stresses (also 2D stresses are informative) - results - volume elements - nonlinear results - plasticity : positive if yield surface triggered - results - volume elements - nonlinear results - tension damage : strain after fctk peak - design - volume elements - nonlinear results - reinforcement stress, max-min concrete stress $ only 2024 : $ PROG WING urs:4 $ HEAD Volume Elements , Non-linear stress reinforcement 1 $ VIEW TYPE DIRE X 0 Y 0 Z 1 AXIS POSY ROTA 0 $ BOX XMIN 4.257151 YMIN 1.347578 ZMIN 0.800008 XMAX 5.584893 YMAX -0.427922 ZMAX -0.0000081 TYPE BWIN OPER AND BGRP 0 $ VIEW TYPE DIRE X 0.864813 Y -0.422351 Z 0.271511 AXIS POSZ ROTA 0 $ LC 501 ; BRIC TYPE NLS1 UNIT DEFA SCHH 0.45 STYP ELEM FILL NO REPR DVEC AVER NO ND 1 $ END $ Clean file folder: $+sys del $(project).$d?