!#!Info Example: QUAD tendons buckling !#!Info Keyword: buckling; tendon !#!Info Program: ASE $ !#!Kapitel System +PROG AQUA urs:1 KOPF Materials and Cross Sections UNIT 5 $ units: sections in mm, geometry+loads in m NORM 'DIN' 'en1992-2004' $ NORM 'DIN' '1045-2008' BETO 1 C 40 $ = C40/50 STAH 2 $ Reinforcement steel STAH 7 S 235 STAH 11 Y 1770 ROHR 9 D 400 T 5 MNR 7 ENDE +PROG SOFIMSHA URS:2 KOPF Test UNIT 5 $ units: sections in mm, geometry+loads in m SYST RAUM GDIR POSZ GDIV 1000 KNOT 1 X 0 8 0 $ linke untere Ecke der Platte $ left lower edge of the slab KNOT 8 X 11 -8 0 $ linke obere Ecke der Platte $ left upper edge of the slab KNOT NR NR1 NR2 Y 2 1 8 6.50 $ Kante der Voute $ Edge of haunch 3 1 8 5.50 $ Lagerachse 1 $ Bearing axis 1 4 1 8 2.50 $ Lagerachse 2 $ Bearing axis 2 5 1 8 -2.50 $ Lagerachse 3 $ Bearing axis 3 6 1 8 -5.50 $ Lagerachse 4 $ Bearing axis 4 7 1 8 -6.50 $ Kante der Voute $ Edge of haunche TRAN KNOT VON 1 BIS 8 DNR 100 DX 0.80 TRAN KNOT VON 1 BIS 8 DNR 200 DX 0.80+20.0 TRAN KNOT VON 1 BIS 8 DNR 300 DX 0.80+20.0+0.80 TRAN KNOT VON 1 BIS 8 DNR 700 DX 0.80+5.00 TRAN KNOT VON 1 BIS 8 DNR 800 DX 0.80+10.00 TRAN KNOT VON 1 BIS 8 DNR 900 DX 0.80+15.00 TRAN KNOT 704,705 DNR 50 DZ -1.00 TRAN KNOT 804,805 DNR 50 DZ -1.30 TRAN KNOT 904,905 DNR 50 DZ -1.00 GRUP 0 let#1 200 $ Dicke am Kragarmende $ Thickness at cantilever end let#2 400 $ Dicke am Kragarmanschnitt $ Thickness at cantilever section let#3 800 $ dicker Plattenbereich $ Thick slab area QUAD K1 K2 K3 K4 M N T1 T2 T3 T4 MNR=1 MBW=2 LAGE=UNTE 1 101 102 2 1 2 #1 #1 #2 #2 $ Kragarm $ Cantilever 101 201 202 102 12 2 #1 #1 #2 #2 $ Kragarm $ Cantilever 201 301 302 202 1 2 #1 #1 #2 #2 $ Kragarm $ Cantilever $ 2 102 103 3 1 2 #3 #3 #3 #3 $ 102 202 203 103 12 2 #3 #3 #3 #3 $ 202 302 303 203 1 2 #3 #3 #3 #3 $ $ 3 103 104 4 1 3 #3 #3 #3 #3 $ 103 203 204 104 12 3 #3 #3 #3 #3 $ 203 303 304 204 1 3 #3 #3 #3 #3 $ $ 4 104 105 5 1 4 #3 #3 #3 #3 $ 104 204 205 105 12 4 #3 #3 #3 #3 $ 204 304 305 205 1 4 #3 #3 #3 #3 $ $ 5 105 106 6 1 3 #3 #3 #3 #3 $ 105 205 206 106 12 3 #3 #3 #3 #3 $ 205 305 306 206 1 3 #3 #3 #3 #3 $ $ 6 106 107 7 1 2 #3 #3 #3 #3 $ 106 206 207 107 12 2 #3 #3 #3 #3 $ 206 306 307 207 1 2 #3 #3 #3 #3 $ $ 7 107 108 8 1 2 #2 #2 #1 #1 $ Kragarm $ Cantilever 107 207 208 108 12 2 #2 #2 #1 #1 $ Kragarm $ Cantilever 207 307 308 208 1 2 #2 #2 #1 #1 $ Kragarm $ Cantilever $ FEDE NR KA DZ=1 CP=1E6 CQ=1E6 $ Schwimmende Lagerung auf 2*4 Lagern $ Floating bearing on 2*4 bearings 103 103 104 104 105 105 106 106 FEDE NR KA DZ=1 CP=1E6 CQ=500 $ Schwimmende Lagerung auf 2*4 Lagern 203 203 204 204 205 205 206 206 knot 103,203 fix py ENDE !#!Kapitel Loading, Prestress +PROG SOFILOAD URS:24 KOPF actions and loads ECHO ACT Voll $ Please check GAMU factors, especially for L_U and L_T (in germany GAMU 1.35) UNIT 5 $ units: sections in mm, geometry+loads in m ACT G_1 BEZ 'dead load' ACT G_2 BEZ 'dead load' ACT P GAMU 1.00 GAMF 1.00 PSI0 1.00 PSI1 1.00 PSI2 1.00 BEZ 'prestress' ACT C BEZ 'C+S' ACT ZC GAMU 1.00 1 SUP PERM PSI0 1.00 PSI1 1.00 PSI2 1.00 BEZ ' life load creep part' ACT L_T GAMU - 0 SUP EXCL PSI0 0.75 PSI1 0.75 PSI2 0.20 PS1S - BEZ 'TS Tandemsystem' ACT L_U GAMU - 0 SUP COND PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - BEZ 'UDL basic load' let#L 32.60 $ Länge der Flächenlasten $ Length of area loads LF 1 TYP none EGZ 1 LF 2 TYP none QUAD GRP 0 TYP PZZ P 0.12*25 ENDE +PROG TENDON urs:3 KOPF Parabolic Prestress UNIT 5 $ units: sections in mm, geometry+loads in m SYSP NRSV 12 FIRM SUSP 1045 NR 112 MAT 11 $ 12 Litzen *150mm2 SUSPA DIN 1045-1 $ reference axis for all tendons = x-axis: $ Bezugsspur = X-Achse $ Reference lane = X-Axis AXES NRH 1 VAL1 0.00 0.00 0.00 TYP=poly ART=QUAD 1 VAL1 50.00 0.00 0.00 BEZ "X-Axis" $ tendon geometry definition: let#nr 1 $ Geometrie- und Strangnummer $ Geometry- and String number let#y 6.20 $ Y-Koordinate dieses Stranges $ Y-coordinate of this string #define tendons SGEO NRG #nr NRH 1 NRSV 12 $ NOPS = prestressing system for max-min radius parameters + duct-excentricities let#x 11/2-#y*11/16 $ Startkoordinate an Platten-Aussenkante $ Starting coordinate at slab outer edge ZPUV S U V DVS typ=REFX #x #y 0.25 #x+10.80 #y 0.50 #x+21.60 #y 0.25 CS IBA1 11 12 IBA3 - $ = construction stages ICS3 = removal of tendon VSIG 'RE' KAPA - K3 1150 $ $ k3 = estimated limit to reduce stress at traffic opening $ zul-sigma-traffic opening in most cases (e.g. to DIN-FB 4.4.1.4) -> 0.65 fpk $ final tendon definition: TEND NRS #nr NRG #nr NSP 18 LF - $ QUAD tendons don't have a loadcase number let#nr #nr+1 $ für nächste Nummer hochzählen $ count up for the next number #enddef #include tendons let#y 5.50 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y 5.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y 4.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y 3.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y 2.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y 0.70 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -0.70 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -2.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -3.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -4.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -5.00 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -5.60 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons let#y -6.20 $ Y-Koordinate des nächsten Stranges $ Y-coordinate for the next string #include tendons $ ---------------------------------------------------------- echo plot voll $ tendon plots: SIZE URS SCHR h2 0.18 PLOT GEOA NR 1 FAKH 5 TYPG DUTE PLOT GEOA NR 12 FAKH 5 TYPG DUTE $ PLOT FAKT NR 14 ende !#!Kapitel CSM +PROG CSM URS:56 KOPF Analysis normal case STEU EG AUTO $ Dead load of gamma automatically STEU KRAG 0 BA 10 TYP G_1 BEZ 'G_1' BA 11 TYP P BEZ 'P' $ GRUP NR IBA1 IBAG T0=14 PHIF=1.0 $ PHIS 1.0: creep and shrinkage of springs works as concrete members - 10 - ENDE +apply $(NAME)_csm.dat !#!Kapitel TH3 +PROG ASE urs:6 kopf SLS check LINE STEU DIFF 1000 $ difference loadcases increment SYST prob line PLF 4011 GRUP - BA 11 T1 14 FAKG 1 LF 7011 TYP - BEZ 'SLS check LINE' ende +PROG ASE urs:4 kopf SLS check TH3 steu QART w3 3 STEU DIFF 1000 $ difference loadcases increment SYST prob TH3 PLF 4011 GRUP - BA 11 T1 14 FAKG 1 LF 7013 TYP - BEZ 'SLS check TH3' ende !#!Kapitel Buckling eigenvalues on system with quad tendons +prog ase urs:10 kopf steu QART w3 3 syst plf 7011 GRUP - BA 11 T1 14 eige 6 beul lmin auto lf 8011 $ auf PLC BA 11 ende !#!Kapitel Dynamic eigenvalues on system with quad tendons +prog ase urs:5 kopf steu QART w3 3 syst plf 7011 GRUP - BA 11 T1 14 eige 6 lf 8111 $ auf PLC BA 11 ende !#!Kapitel Dynamic eigenvalues on stressfree system +prog ase urs:8 kopf $ ctrl QTYP v3 3 $ syst plc 7011 GRUP - BA 11 T1 14 eige 6 lf 8211 ende !#!Kapitel Dynamic eigenvalues with quad normal force only (=wrong) +prog ase urs:7 kopf $ ctrl QTYP v3 3 STEU WARN 268 syst plf 7011 GRUP - BA 11 T1 14 eige 6 lf 8911 $ auf PLC BA 11 ende