!#!Info Example: ADDM STIF as replacement beam !#!Info Keyword: ADDM STIF element between two nodes !#!Info Program: SOFIMSHA !#!Info Version: SOFiSTiK 2016 !#!Info Date: $Date: 2017-07-17 ASA +prog aqua urs:1 head Materials and Cross Section echo full extr norm en 1992-2004 00 conc 1 c 30 srec 1 500 300 mno 1 ay 0 az 0 $ without shear deformation end +prog sofimsha urs:2 head Geometry syst 3d gdiv 1000 gdir posz $ control beam node (1 11 1) (0 1) 0 0 node 1 fix f $ pxpypzmx node 11 fix f $ pypzmx grp 1 beam (1 10 1) (1 1) (2 1) ncs 1 $ test beam with ADDM element node (21 31 1) (11 1) 0 0 node 21 fix f $ pxpypzmx node 31 fix f $ pypzmx grp 2 beam (1 4 1) (21 1) (22 1) ncs 1 beam (6 10 1) (26 1) (27 1) ncs 1 $ beam to get the ADDM stiffness matrix node 41 0 2 0 fix f node 42 1 2 0 fix f grp 3 beam 1 41 42 ncs 1 end +prog sofiload urs:3 head Loads to get the ADDM matrix lc 11 node 41 wxx 1000 lc 12 node 41 wyy 1000 lc 13 node 41 wzz 1000 lc 14 node 41 dxx 1000 lc 15 node 41 dyy 1000 lc 16 node 41 dzz 1000 lc 21 node 42 wxx 1000 lc 22 node 42 wyy 1000 lc 23 node 42 wzz 1000 lc 24 node 42 dxx 1000 lc 25 node 42 dyy 1000 lc 26 node 42 dzz 1000 end +prog ase urs:4 head Solve ADDM loads grp 3 lc 11 lc 12 lc 13 lc 14 lc 15 lc 16 lc 21 lc 22 lc 23 lc 24 lc 25 lc 26 end +prog sofimsha urs:6 head ADDM element definition syst rest ctrl rest 2 GRP 0 $ ADDM Element as Stiffness: (functions only in GRP 0 ! ) $ without shear deformation the FLEX matrix comes from: $ | EA/L 0 0 0 0 0 -EA/L 0 0 0 0 0 | | uxx_1 | | PX_1 | $ | 0 12EIz/L^3 0 0 0 6EIz/L^2 0 -12EIz/L^3 0 0 0 6EIz/L^2 | | uyy_1 | | PY_1 | $ | 0 0 12EIy/L^3 0 -6EIy/L^2 0 0 0 -12EIy/L^3 0 -6EIy/L^2 0 | | uzz_1 | | PZ_1 | $ | 0 0 0 GIt/L 0 0 0 0 0 -GIt/L 0 0 | | dxx_1 | | MX_1 | $ | 0 0 -6EIy/L^2 0 4EIy/L 0 0 0 6EIy/L^2 0 2EIy/L 0 | | dyy_1 | | MY_1 | $ | 0 6EIz/L^2 0 0 0 4EIz/L 0 -6EIz/L^2 0 0 0 2EIz/L | * | dzz_1 | = | MZ_1 | $ | -EA/L 0 0 0 0 0 EA/L 0 0 0 0 0 | | uxx_2 | | PX_2 | $ | 0 -12EIz/L^3 0 0 0 -6EIz/L^2 0 12EIz/L^3 0 0 0 -6EIz/L^2 | | uyy_2 | | PY_2 | $ | 0 0 -12EIy/L^3 0 6EIy/L^2 0 0 0 12EIy/L^3 0 6EIy/L^2 0 | | uzz_2 | | PZ_2 | $ | 0 0 0 -GIt/L 0 0 0 0 0 GIt/L 0 0 | | dxx_2 | | MX_2 | $ | 0 0 -6EIy/L^2 0 2EIy/L 0 0 0 6EIy/L^2 0 4EIy/L 0 | | dyy_2 | | MY_2 | $ | 0 6EIz/L^2 0 0 0 2EIz/L 0 -6EIz/L^2 0 0 0 4EIz/L | | dzz_2 | | MZ_2 | $ $ easiest way to get the reactions of the beam in GRP 3 $ see Result Viewer output, Node A and B are Node 25 and 26 $ transformations of the ADDM matrix (eg rotation in case of local directions) should be done by the user! addm No1 No2 P UX UY UZ UXX UYY UZZ No=1 type=stif 25 25 PX 4925485.0 0.0 0.0 0.00 0.00 0.00 25 25 PY 0.0 443284.1 0.0 0.00 0.00 221642.05 25 25 PZ 0.0 0.0 1231297.4 0.00 -615648.69 0.00 25 25 MX 0.0 0.0 0.0 38531.90 0.00 0.00 25 25 MY 0.0 0.0 -615648.7 0.00 410438.63 0.00 25 25 MZ 0.0 221642.0 0.0 0.00 0.00 147762.17 25 26 PX -4925485.0 0.0 0.0 0.00 0.00 0.00 25 26 PY 0.0 -443284.1 0.0 0.00 0.00 221642.05 25 26 PZ 0.0 0.0 -1231297.4 0.00 -615648.69 0.00 25 26 MX 0.0 0.0 0.0 -38531.90 0.00 0.00 25 26 MY 0.0 0.0 615648.7 0.00 205210.08 0.00 25 26 MZ 0.0 -221642.0 0.0 0.00 0.00 73879.88 26 25 PX -4925485.0 0.0 0.0 0.00 0.00 0.00 26 25 PY 0.0 -443284.1 0.0 0.00 0.00 -221642.05 26 25 PZ 0.0 0.0 -1231297.4 0.00 615648.69 0.00 26 25 MX 0.0 0.0 0.0 -38531.90 0.00 0.00 26 25 MY 0.0 0.0 -615648.7 0.00 205210.08 0.00 26 25 MZ 0.0 221642.0 0.0 0.00 0.00 73879.88 26 26 PX 4925485.0 0.0 0.0 0.00 0.00 0.00 26 26 PY 0.0 443284.1 0.0 0.00 0.00 -221642.05 26 26 PZ 0.0 0.0 1231297.4 0.00 615648.69 0.00 26 26 MX 0.0 0.0 0.0 38531.90 0.00 0.00 26 26 MY 0.0 0.0 615648.7 0.00 410438.63 0.00 26 26 MZ 0.0 -221642.0 0.0 0.00 0.00 147762.17 end +prog sofiload urs:5 head Test with force loads lc 101 node 6 pxx 100 node 26 pxx 100 lc 102 node 6 pyy 100 node 26 pyy 100 lc 103 node 6 pzz 100 node 26 pzz 100 lc 104 node 6 mx 100 node 26 mx 100 lc 105 node 6 my 100 node 26 my 100 lc 106 node 6 mz 100 node 26 mz 100 end +prog ase urs:7 head Solve force loads GRP - full GRP 3 off lc 101 lc 102 lc 103 lc 104 lc 105 lc 106 end +prog sofiload urs:8 head Test with deformation loads lc 201 node 11,31 wxx 1000 lc 202 node 11,31 wyy 1000 lc 203 node 11,31 wzz 1000 lc 204 node 11,31 dxx 1000 lc 205 node 11,31 dyy 1000 lc 206 node 11,31 dzz 1000 end +prog ase urs:9 head Solve deformation loads GRP - full GRP 3 off lc 201 lc 202 lc 203 lc 204 lc 205 lc 206 end