!#!Info Example: Cracked beam analysis including PLC primary stage force situation !#!Info Keyword: construction stages; cracked; beam !#!Info Program: ASE !#!Kapitel System +PROG AQUA URS:1 HEAD Cracked bridge pier on PLC primary stage from CSM NORM 'NS' 'en199X-200X' UNIT 5 $ units: sections in mm, geometry+loads in m CTRL styp BEM echo mat,sect full CONC 1 C 40 $ = C40/50 CONC 9 C 40 gam 0 $ pier with gam 0 Bellmann 23.02.2024 STEE 2 S 500 $ standard reinforcement steel 500 STEE 11 Y '1860A' $ prestessing steel SECT 1 MNO 1 sto#zmax 1.86 POLY OPZ MNO 1 VERT - 0.00[m] 0.00[m] - 3.28[m] 0.00[m] - 3.33[m] 0.20[m] - 1.60[m] 0.35[m] - 1.68[m] 1.14[m] - 1.65[m] 1.16[m] - 1.60[m] #zmax[m] POLY OPZ MNO 0 VERT - 0.00[m] 0.28[m] - 1.15[m] 0.38[m] - 1.15[m] 1.62[m] $ $ Torsionsbox: *---------------------> y $ | $ *----------|----------* #zo $ | |<---#yo-->| $ | | | $ | | | $ | |<---#yu-->| $ *----------|----------* #zu $ z let#yo 1.50 $ y-Wert der Torsionsbox oben let#yu 1.50 $ y-Wert der Torsionsbox unten let#zo 0.06 $ z-Wert der Torsionsbox oben let#zu #zmax-0.06 $ " der Torsionsbox unten LAY 0 'TORS' type min $ default for reinforcement layers LAY 1 'BOT' type opt $ 'bot' lower reinforcement 'bot' LAY 2 'TOP' type opt $ 'top' upper reinforcement 'top' LRF 1 #yo #zo #yu[m] #zu[m] AS 1 LAY 0 TORS ACTI D 12 $ Durchm.12/15 LRF 2 - - -#yu[m] #zu[m] AS 1 LAY 0 TORS ACTI D 12 LRF 3 - - -#yo[m] #zo[m] AS 1 LAY 0 TORS ACTI D 12 LRF 4 - - #yo[m] #zo[m] AS 1 LAY 0 TORS ACTI D 12 let#yo 3.20 $ y-Wert Hauptlängsbew. oben let#yu #yu-0.05 $ y-Wert Hauptlängsbew. unten LRF 5 #yu #zu-0.05[m] -#yu[m] AS 1 LAY 1 TORS PASS D 20 $ unten LRF 6 #yo #zo+0.05[m] -#yo[m] AS 1 LAY 2 TORS PASS D 20 $ oben CUT 1 ZB 0.40[m] LAY 1 $ Bei x=3.80 m von der Stütze oberhalb Spannglied CUT 2 ZB 0.60[m] LAY 1 $ Bei x=3.80 m von der Stütze unterhalb Spannglied CUT 3 YB -1.75[m] MNO 1 LAY 3 TYPE FLAN $ belt Y neg. to get correct cut direction (cut belt off) CUT 4 YB 1.00[m] ZB -1.00[m] YE 1.00[m] ZE 1.00[m] LAY 4 TYPE FLAN VZFK 0.50 CUT 4 YB -1.00[m] ZB 1.00[m] YE -1.00[m] ZE -1.00[m] LAY 4 TYPE FLAN VZFK 0.50 SPT NO Y Z MNO 'BOT' 0.00 #zmax 1 $ Literal BOT muss in Grossbuchstaben 'TOP' 0.00 0.00 1 $ eingegeben werden SREC 8 H 1.50[m] B 4.50[m] MNO 1 $ abutment SREC 9 H 1.20[m] B 1.20[m] MNO 9 $ pier with gam 0 Bellmann 23.02.2024 END +PROG SOFIMSHA urs:3 HEAD Cracked bridge pier on PLC primary stage from CSM UNIT 5 $ units: sections in mm, geometry+loads in m SYST SPAC GDIV 1000 POSZ NODE (101 121 1) X (0 4.50) GRP 1 BEAM (101 108 1) (101 1) (102 1) NCS 1 NP -1 BEAM 109 109 110 NCS 1 NP -1 BEAM 110 110 111 NCS 1 NP -1 GRP 2 BEAM 111 111 112 NCS 1 NP -1 BEAM 112 112 113 NCS 1 NP -1 BEAM (113 120 1) (113 1) (114 1) NCS 1 NP -1 $ GRP 9 $ Den folgenden Block können Sie ohne Änderung verwenden und nur die $ darunter stehenden Variablen let#node ... setzen ! $ (Voraussetzung: Knotennummern im Überbau < 1000) #define support01 GRP 7 $ couplings and springs let#dhspring 0 $ m bearing height $ bearing springs let#sy 0.5*#b0 TRAN node #node dy #sy dz #h dno 51000 if #b0 ; tran node #node dy -#sy dz #h dno 53000 ; endif TRAN node #node dy #sy dz #h dno 52000 if #b0 ; tran node #node dy -#sy dz #h dno 54000 ; endif $ node on top of pier: node 49000... tran node #node dz #h dno 49000 node #node+51000 FIX KF #node $ coupling if #b0 ; node #node+53000 FIX KF #node ; endif $ coupling node #node+52000 FIX KF #node+49000 $ coupling if #b0 ; node #node+54000 FIX KF #node+49000 ; endif $ coupling SPRI #node+0 #node+51000 #node+52000 DZ 1 CP 1E7 $ vertical bearing if #b0 ; SPRI #node+1 #node+53000 #node+54000 DZ 1 CP 1E7 ; endif $ transverse bearing springs: SPRI #node+3 #node+51000 #node+52000 dy 1 CP 1E6 $ transverse $ longitudinal bearing springs: let#cp_long 1.0 $ weak - to get bearing displacements if #logitud ; let#cp_long 1E4 ; endif $ longitudinal fixed bearing but soft to not get prestress restraint SPRI #node+7 #node+51000 #node+52000 dx 1 CP #cp_long $ longitudinal if #b0 ; SPRI #node+8 #node+53000 #node+54000 dx 1 CP #cp_long ; endif $ longitudinal $ node bottom of pier: node 50000... tran node #node dz #UKpier dno 50000 GRP #pier BEAM fit 50000+#node 49000+#node NCS #pier KR POSY DIV 1 node #node+50000 FIX F #enddef $ #define support02 GRP 7 $ couplings and springs let#dhspring 0 $ m bearing height $ node on top of pier: node 49000... tran node #node dz #h dno 49000 node #node+49000 FIX KP #node $ coupling $ node bottom of pier: node 50000... tran node #node dz #UKpier dno 50000 GRP #pier BEAM fit 50000+#node 49000+#node NCS #pier KR POSY DIV 8 node #node+50000 FIX PPMZ $ fixed support spri - NA #node+50000 dx 1 cm 1E6 spri - NA #node+50000 dy 1 cm 1E6 #enddef $ let#node 101 $ basenumber of node in superstructure let#h #zmax $ m cross section height let#b0 3.4 $ m bearingspread let#UKpier 4 $ m bottom level pier let#logitud 1 $ =1 bearing fixed in longitud. direction but soft to not get prestress restraint let#pier 8 $ group and section pier #include support01 $ let#node 111 $ basenumber of node in superstructure let#b0 1.0 $ m bearingspread let#logitud 1 $ =1 bearing fixed in longitud. direction but soft to not get prestress restraint let#UKpier 45 $ m bottom level pier let#pier 9 $ group and section pier #include support02 $ let#node 121 $ basenumber of node in superstructure let#b0 3.4 $ m bearingspread let#logitud 1 $ =1 bearing fixed in longitud. direction but soft to not get prestress restraint let#UKpier 4 $ m bottom level pier let#pier 8 $ group and section pier #include support01 $ $ A round of bending moments over the middle support and shear check positions $ can be defined with beam sections - see more\..\csm31_design_ella.dat - SOFIMSHA END +PROG SOFIMSHC urs:5 HEAD Axis for SOFILOAD load trains, SSD Tendons, Animator environment UNIT 5 $ units: sections in mm, geometry+loads in m SYST REST GAX 'AX_1' GAXB X1 0 0 0 X2 100 0 0 $ create axis from point 1 to point 2 (also with R) $ GAX...TYPC SPLI and GAXC can create an axis through a set of points end !#!Kapitel Loading, Prestress +PROG SOFILOAD URS:4 HEAD actions and loads $ actions bridge design $ All actions should be defined in a separate SOFILOAD run as shown here. UNIT 5 $ units: sections in mm, geometry+loads in m ECHO ACT Full $ Please check GAMU factors, especially for L_U and L_T (in germany GAMU 1.35) ACT G_1 TITL 'dead load' ACT G_2 TITL 'dead load' ACT P TITL 'prestress' ACT C TITL 'C+S' ACT L_T GAMU - 0 SUP EXCL PSI0 0.75 PSI1 0.75 PSI2 0.20 PS1S - TITL 'TS Tandemsystem' ACT L_U GAMU - 0 SUP COND PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL basic load' ACT L_1 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 1' ACT L_2 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 2' ACT L_3 GAMU 1.35 0 SUP EXCL PSI0 0.40 PSI1 0.40 PSI2 0.20 PS1S - TITL 'UDL overload span 3' ACT T GAMU 0.81 0 SUP EXCL PSI0 0.80 PSI1 0.60 PSI2 0.50 PS1S - TITL 'temperatur' LC 2 TITL 'G_2' TYPE none $ Typ none, $ as G_1, G_2 and P are subsequently generated by csm BEAM GRP 1,2 TYPE PZZ 15 LC 9 TITL 'G pier' TYPE none BEAM GRP 9 TYPE PZZ 36 $ pier with gam 0 Bellmann 23.02.2024 $ Load model 1 acc. EN 1991 german annex with alpha values ! UDL $ UDL basic load 3 kN/m2 = alpha-qgr*2.50 = 1.2*2.50 $ alpha-qgr*2.50 = 1.2*2.50 = 3 kN/m2 residual areas LC 21 TITL 'UDL-span-1-r' TYPE L_U BEAM GRP 1 TYPE PZZ PA 3.0*4.80 EYA 2.4[m] $ 4.80 m width LC 22 TITL 'UDL-span-1-l' TYPE L_U $ = half bridge BEAM GRP 1 TYPE PZZ PA 3.0*4.80 EYA -2.4[m] $ 4.80 m width LC 23 TITL 'UDL-span-2-r' TYPE L_U BEAM GRP 2 TYPE PZZ PA 3.0*4.80 EYA 2.4[m] $ 4.80 m width LC 24 TITL 'UDL-span-2-l' TYPE L_U BEAM GRP 2 TYPE PZZ PA 3.0*4.80 EYA -2.4[m] $ 4.80 m width $ overload lane 1+2 $ alpha-q1*9.00 = 1.333*9.00 = 12 kN/m2 lane 1 alpha see din_en_1991-2_2012NA.pdf $ alpha-q2*2.50 = 2.40 *9.00 = 6 kN/m2 lane 2 LC 31 TITL 'UDL-overload-r-1' TYPE L_1 BEAM GRP 1 TYPE PZZ PA (12.0-3.0)*3 EYA 2.10[m] $ 2.10 m maxi. excentricity BEAM GRP 1 TYPE PZZ PA (6.0-3.0)*3 EYA 2.10-3.00[m] $ Lane 2 depending on national annex LC 32 TITL 'UDL-overload-l-1' TYPE L_1 BEAM GRP 1 TYPE PZZ PA (12.0-3.0)*3 EYA -2.10[m] BEAM GRP 1 TYPE PZZ PA (6.0-3.0)*3 EYA -2.10+3.00[m] $ Lane 2 depending on national annex LC 33 TITL 'UDL-overload-r-2' TYPE L_2 BEAM GRP 2 TYPE PZZ PA (12.0-3.0)*3 EYA 2.10[m] BEAM GRP 2 TYPE PZZ PA (6.0-3.0)*3 EYA 2.10-3.00[m] $ Lane 2 depending on national annex LC 34 TITL 'UDL-overload-l-2' TYPE L_2 BEAM GRP 2 TYPE PZZ PA (12.0-3.0)*3 EYA -2.10[m] BEAM GRP 2 TYPE PZZ PA (6.0-3.0)*3 EYA -2.10+3.00[m] $ Lane 2 depending on national annex $ Maxima can take one loadcase of L_1 and one loadcase of L_2 ! TS Tandem System $ Tandemsystem : Lane 1:Wheel load 150 kN/Rad TS=SOFILOAD-TYP L ! $ Total excess load=600 kN (Please check safety factor GAMU ! 1.35/1.50) $ Lane 2:Wheel load 100 kN/Rad $ Total excess load=400 kN $ ======================================================================= $ Case EYA1 Lane 1 is at right all xx m a Node position! $---------------------------------------------------------------------------------------- $ Distribution of of lanes acc. EC $ traffic width 7.20m: $ vehicle full right: EYA1= 7.20m/2 - 1.50m = 2.10 m = center of lane 1 $ EYA2= 2.10 m - 3.00m = -0.90 m = center of lane 2 loop#1 20 LC 41+#1 TITL 'Tandem system lane 1+2' TYPE L_T BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 4.14*#1,4.14*#1+1.20 EY 2.10+1.0[m] $ EYA1 BEPL FROM 1101 TO 2121 TYPE PZZ P 600/4 A 4.14*#1,4.14*#1+1.20 EY 2.10-1.0[m] BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 4.14*#1,4.14*#1+1.20 EY -0.90+1.0[m] $ EYA2 BEPL FROM 1101 TO 2121 TYPE PZZ P 400/4 A 4.14*#1,4.14*#1+1.20 EY -0.90-1.0[m] endloop $ Achsabstand 1.20 m = +- 0.60 - axis distance 1.20 m = +- 0.60 ! Wind LC 72 TITL 'wind_transvers -Y' TYPE W $ will not be used further! BEAM grp 1,2 type PYY -14.00 $ superstructure BEAM grp 9 type PYY -6.00 $ pier END +PROG TENDON urs:9 HEAD Parabolic Prestress UNIT 5 $ units: sections in mm, geometry+loads in m $ Definition of prestressing system: $ We recommend to input all data as user defined prestressing system. $ For the static analysis the following values are sufficient: SYSP NOPS MAT ZV AZ LITZ MINR BETA MUE ECC SP DO $ 1 11 2430[kN] 1800[mm2] 12 6.50[m] 0.3 0.20 4[mm] 3[mm] 82[mm] $ csm3_parabel and csm32_slab, 12 wires $ 1 11 3078[kN] 2250[mm2] 15 7.10[m] 0.3 0.20 4[mm] 3[mm] 92[mm] $ 15 wires 1 11 3848[kN] 2850[mm2] 19 6.50[m] 0.3 0.21 4[mm] 3[mm] 97[mm] $ csm31_beam 19 wires $ 1 11 2430[kN] 1800[mm2] 12 6.50[m] 0.0 0.00 0[mm] 0[mm] 10[mm] $ csm3_casting_yard $ $ reference axis and span definition: AXES NOH 1 TYPE AUTO 101 121 TOPP NOH 1 KIND NODE S 101,111,121 SP 1,2,3 $ S=101 .. SP 1 = Node 101 is beginning first span $ tendon geometry definition: NOPS = prestressing system for max-min radius parameters + duct-excentricities TGEO NOG 1 NOH 1 NOPS 1 $ Definition points of geometry: (TYP=SPAN/FELD station via highpoints) PTUV S U V DVS RV RL TYPE=SPAN 1.00 1.38 0.40 - 1.40 = 1.72 0 $ x= 1.40 = Feld 1 bei xi=0.4 ! 2.00 = 0.14 0 12.0 1.5 $ Radius über der Innenstütze 2.60 = 1.72 0 3.0 = 0.40 - TGEO NOG 2 NOH 1 NOPS 1 $ Definition points of geometry: (TYP=SPAN/FELD station via highpoints) PTUV S U V DVS RV RL TYPE=SPAN 1.00 -1.38 0.40 - 1.40 = 1.72 0 $ x= 1.40 = Feld 1 bei xi=0.4 ! 2.00 = 0.14 0 12.0 1.5 $ Radius über der Innenstütze 2.60 = 1.72 0 3.0 = 0.40 - $ Additional values: construction stages: CS ICS1 11 12 $ prestress-procedure $ Anspann-Vorgehen PSIG 'RILE' ANWS 9 KAPA - K3 1280 $ $ final tendon definition: TEND NOT 1 NOG 1 NTEN 3 LC 3 LC0 0 TEND NOT 2 NOG 2 NTEN 3 LC 3 LC0 0 $ echo plot full $ tendon plots: SIZE URS PLOT GEOE NO all FACH 5 TYPG DUTE PLOT FACT NO 1 FACH 15 end !#!Kapitel CSM Stage Analysis +PROG CSM URS:87 HEAD Construction sequence CTRL DL AUTO $ Dead load of gamma automatically CTRL STOR 0 V2 0 $ quicker CTRL GPCS 0 $ CTRL GPCS 1 $ GPC-separated = more accurate in case of removing supports ECHO RCRE full $ CS 8 TYPE G_1 TITL 'G_1' CS 10 TYPE G_1 TITL 'G_1' CS 11 TYPE P TITL 'Prestress' CS 15 TYPE C_1 TITL 'Creep+shrinkage until G_2' T 40 CS 20 TYPE G_2 TITL 'G_2, asphalt, capping' CS 25 TYPE C_1 TITL 'Creep until traffic opening' T 40 CS 35 TYPE C_2 TITL 'Creep until t-infinite' T 365*100 NCRE 2 $ GRP NO ICS1 T0 PHIF=1 - 8 14 8,9 8 14 $ piers 1,2 10 14 $ superstructure 7 10 14 $ couplings and springs $ $ LC: only secondary loads! prestress load cases will be automatically inserted! LC 2 ICS1 20 $ g_2 LC 9 ICS1 8 $ pier with gam 0 Bellmann 23.02.2024 SELE BEAM 1105 X 0[m] $ Beams for the AQB stress output END +apply "$(NAME)_csm.dat" !#!Kapitel Nonlinear Stability - Preparations +prog aqb urs:7 head Minumum reinforcement BEAM GRP 9 CS AS CS0 5[cm2] CS1 160[cm2] CS2 160[cm2] $ AS0 for circular pylons AS1 , AS2 for other section types ! REIN RMOD SAVE end +PROG SOFILOAD urs:2 HEAD predeformation LC 87 TYPE none TITL 'Load for oblique predeformation' BEAM grp 1,2 type PYY +0.30 $ pier BEAM grp 9 type PYY -1.00 $ pier END +prog ase urs:10 head Loadcase for oblique predeformation LC 87 end !#!Kapitel Increasing additional effects on final force situation +PROG ASE urs:17 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 4036 GRP 'CSM' CS 36 LC 101 FACD 1.00 titl 'TH3 1.00 times dead load =copy of 4036' $ now apply all reals loads on the system that act in stage 909 and give safety factor: LCC 2 fact 1.00 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 PLC YES $ pier with gam 0 Bellmann 23.02.2024 END +prog ase urs:12 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 101 GRP 'CSM' LINE CS 36 $ all groups work linear except: LC 102 FACD 1.35 TITL 'TH3 1.35 times dead load' LCC 2 fact 1.35 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 fact 1.35 PLC YES $ pier with gam 0 Bellmann 23.02.2024 END +prog ase urs:11 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 101 GRP 'CSM' LINE CS 36 $ all groups work linear except: LC 103 FACD 1.35 TITL 'TH3 1.35+traffic' LCC 2 fact 1.35 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 fact 1.35 PLC YES $ pier with gam 0 Bellmann 23.02.2024 LCC (21 24 1) fact 1.35 $ UDL-full LCC 31,33 fact 1.35 $ UDL-overload LCC 52 fact 1.35 $ Tandem system lane 1+2 END +prog ase urs:18 head Buckling eigenvalues on traffic syst plc 103 eige 6 buck lmin auto LC 3101 end +prog ase urs:13 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 101 OBLI LC 87 vmax -50[mm] dire YY $ additional stressfree oblique predeformation CTRL WARN 293 $ ignore error due to oblique predeformation in combination with cable sagging GRP 'CSM' LINE CS 36 $ all groups work linear except: LC 104 FACD 1.35 TITL 'TH3 1.35+traffic +OBLI' LCC 2 fact 1.35 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 fact 1.35 PLC YES $ pier with gam 0 Bellmann 23.02.2024 LCC (21 24 1) fact 1.35 $ UDL-full LCC 31,33 fact 1.35 $ UDL-overload LCC 52 fact 1.35 $ Tandem system lane 1+2 END +prog ase urs:14 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 101 OBLI LC 87 vmax -50[mm] dire YY $ additional stressfree oblique predeformation CTRL WARN 293 $ ignore error due to oblique predeformation in combination with cable sagging GRP 'CSM' LINE CS 36 $ all groups work linear except: LC 105 FACD 1.35 TITL 'TH3 1.35+traffic +OBLI +Wind' LCC 2 fact 1.35 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 fact 1.35 PLC YES $ pier with gam 0 Bellmann 23.02.2024 LCC (21 24 1) fact 1.35 $ UDL-full LCC 31,33 fact 1.35 $ UDL-overload LCC 52 fact 1.35 $ Tandem system lane 1+2 LCC 72 fact 1.50 $ Wind END +prog ase urs:15 HEAD ECHO GRP,LOAD no SYST PROB TH3 PLC 101 NSTR K1 KSV CALD KSB CALD FMAX 0.8 $ nonlinear beams OBLI LC 87 vmax -50[mm] dire YY $ additional stressfree oblique predeformation CTRL WARN 293 $ ignore error due to oblique predeformation in combination with cable sagging GRP 'CSM' LINE CS 36 $ all groups work linear except: GRP 9 FULL CS 36 T1 0 $ cracked pier - as GRP 'CSM' also uses GRP T1 from CSM (creep and shrinkage) $ and this is not allowed in combination with NSTR/DEHN, T1 must be set to 0. LC 106 FACD 1.35 TITL 'cracked 1.35+traffic +OBLI +Wind' LCC 2 fact 1.35 PLC YES $ already in PLF g_2 LCC 3 PLC YES $ already applied in PLC prestress LCC 9 fact 1.35 PLC YES $ pier with gam 0 Bellmann 23.02.2024 LCC (21 24 1) fact 1.35 $ UDL-full LCC 31,33 fact 1.35 $ UDL-overload LCC 52 fact 1.35 $ Tandem system lane 1+2 LCC 72 fact 1.50 $ Wind END Comment: In case you have problems with this feature you can also make a manual AQB iteration,# see sfix_ase_aqb_iter.dat +PROG RESULTS urs:16 HEAD Se SIZE TYPE "URS" LC NO 106 ENO 9006 X 0.000 ; CROS TYPE RFSS ETYP BEAM RTYP NONL SCHH 0.25 REPR DLIN FILL NO UNIT DEFA $ plot of linear stresses see aseaqb_4... END $ Clean file folder: +sys del $(project).$d?