!#!Info Example: post-tensioning with TENDON !#!Info Keyword: check beam internal forces, stresses and displacements +prog aqua urs:1 head echo mat full norm en 199X-200X 00 conc 1 c 30 stee 2 y 1860 srec 1 500 500 mno 1 end +prog sofimsha urs:2 head syst 3d gdiv 1000 gdir posz node (1 2 1) x (0 10) y -.25 z 0 node (3 4 1) x (0 10) y .25 z 0 node 1 fix pxpypz node 2 fix pypz node 3 fix pxpz node 4 fix pz grp 1 quad mesh 1 2 4 3 t 500 mno 1 m 10 n 1 end +prog sofimshc urs:6 head syst rest gax 'axis' tend gaxa s 1 x 0 y 0 z 0 gaxa s 2 x 10 y 0 z 0 end +prog tendon urs:3 head post tensioning SYSP NOPS 1 COMP SUSP ETA NO 404 MAT 2 zv 4*150 sp 0 mue 0 $ nominal force 4*150 and slip and mue 0 AXES NOH 1 TYPE refx val1 axis kind quad TOPP NOH 1 KIND refx S 1,2 SP 1,2 TGEO NOG 1 NOH 1 NOPS 1 PTUV S U V DVS TYPE=SPAN 1 0 0.0 - 1.50 - 0.2 0 2 0 0.0 - CS ICS1 20 999 $ unbonded $ CS ICS1 20 21 $ bond from CS 21 psig ri k2 1000 k4 1000 $ enforce limit of 1000MPa TEND NOT 1 NOG 1 NTEN 1 LC 20 ECHO PLOT full SCHH h2 0.25 PLOT FACT NO 1 FACH 5 end +prog sofiload urs:4 head lc 1 none quad grp 1 type pg 1.5 lc 10 type q quad grp 1 type pg 5 end +prog csm urs:5 head post tensioning $ using the CSM construction sequence tendons always generate stress increments (reason: elongations along the member) cs no type titl 10 g_1 concreting 20 p prestress $facp 0.4 30 g_2 g2 40 c_1 c+s t 28 rh 70 temp 20 ncre 1 grp no ics1 atil t0 1 10 - 28 lc 1 g_2 30 end +apply $(name)_csm.dat +prog ase urs:7 head live load $ in a single ASE using appropriate GRP CS the stress increment can be negelected grp - cs 50 lc 10 end